martes, 17 de diciembre de 2019

Trabajar con expresiones algebraicas de grado 1 y 2

Cuando los estudiantes dan el salto de las ecuaciones de grado 1 a grado 2, a veces se convierte en un momento crítico porque el nivel de abstracción aumenta, y hay situaciones donde el docente se limita a mostrar esa fórmula que muchos de los chavales aprenden de manera mecánica como "menos be más menos la raíz cuadrada..." y colocan todo en la ecuación buscando un a, un b y un c, que les permita colocarlo en esa fórmula que ejecutan casi como un mantra.

Vamos a trabajar en esta entrada con la representación utilizando "algebra tiles" como un paso previo que nos conducirá a completar cuadrados para resolver la ecuación.

Empezamos con las expresiones algebraicas. Es necesario antes de introducir las ecuaciones que los estudiantes tengan un dominio adecuado del trabajo con expresiones. Así que hoy voy a partir de esta aplicación:


La aplicación nos permite ilustrar el significado de qué es la multiplicación de expresiones. El producto de dos binominos de grado 1, da lugar a una expresión de grado 2 (polinomio). Colocamos los bordes y vamos completando el área de la expresión, contando podremos colocar la solución arriba:

Trabajar en los dos sentidos puede facilitar la comprensión, es decir, partir del producto para llegar a la expresión de segundo grado, o partir de ese polinomio de grado 2 para llegar al producto de binomios de grado 1.



Desde este producto iniciaremos ¿qué significa igualar a cero esta expresión? ¿Qué significa resolver la ecuación?

Utilizando https://mathbits.com/MathBits/AlgebraTiles/AlgebraTiles/AlgebraTiles.html podemos ilustrar de forma gráfica el trabajo desde los números enteros hasta el que acabamos de ver como producto de binomios.

Me gustaría partir desde esta solución, ¿qué significa resolver una ecuación de segundo grado?
1. Tenemos un polinomio, que igualamos a cero, y estamos buscando sus raíces.
2. Dado que la expresión para el polinomio de grado 2, vendría del resultado de dos monomios, tendríamos que empezar desde qué significa que el producto de dos monomios (o dos expresiones cualesquiera) sea igual a cero, podríamos decir que una de las dos ha de ser cero, o las dos.

Esta reflexión nos conducirá a la resolución.

Para ello vamos a utilizar una aplicación que nos facilita construir nuestra propia representación y diseñar expresiones que nos conducen a productos y a resoluciones.

https://mathsbot.com/manipulatives/tiles

¿Diseñamos nuestras actividades a partir de estas aplicaciones o construyendo nuestro material manipulativo utilizando estas aplicaciones como base?

No quiero terminar la entrada sin mencionar la representación gráfica, desde una balanza, algo que me parece facilitador para entender el significado físico de una expresión y después de una ecuación desde su representación en los ejes de coordenadas.
¿Qué es la solución de una ecuación? En este caso lo interpretamos como dos funciones que se encuentran a uno y otro lado de la igualdad.



Factorizar un número

Al llegar al aula, me gusta recordar diferentes contenidos matemáticos o procedimientos, que vayan asociados al trabajo del día.
Considero que el buen maestro/a de Educación Infantil debe dominar en profundidad los contenidos desde una perspectiva comprensiva y profunda del significado que tienen, y aún sabiendo que en clase de infantil no van a factorizar números, considero que conocer una buena representación puede dar lugar a actividades guiadas con los niños, quizá no con ese sentido específico pero sí preparándoles incluso para la multiplicación, que es la operación que sustenta esa factorización.

Los maestros necesitan más conocimiento para reconocer conceptos matemáticos específicos utilizados en el juego de los niños para poder aumentar y mejorar el pensamiento matemático en preescolares, medición y clasificación, operaciones, formas y relaciones espaciales. Los maestros necesitan conocimientos para interpretar situaciones matemáticas con el fin de identificar formas de mejorar el pensamiento matemático de los niños. (...)
Lee, J.E. (2017) Preschool Teachers’ Pedagogical Content Knowledge in Mathematics. IJEC 49, 229–243  doi:10.1007/s13158-017-0189-1
 Bueno pues cuando mencioné la palabra factorización, uno de los estudiantes dijo "profe, ¿eso es lo de la rayita?". Son esas cosas que suenan como casi dolientes, pero que demuestran que ese muchacho, no había entendido mucho del significado de factorizar y se había quedado en un procedimiento estanco que ejecutaba probablemente sin mucha reflexión.

Les mostré dos aplicaciones, parecidas y sencillas, para visualizar el significado de factorizar. Ambas pueden sustituir por una representación en papel, pero... ¿por qué no apoyarnos en la tecnología?

Vamos con un número sencillo, el 12.


 Fuente: https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Factorize/


Fuente: https://mathsbot.com/manipulatives/numberFrames

Factorizar desde esta representación es construir un rectángulo, que al multiplicar sus dimensiones da lugar al número buscado.
Las tareas de exploración en la primera de las aplicaciones son muy interesantes:
Siga las instrucciones para encontrar factorizaciones para varios números. Mientras trabaja, vea si puede responder estas preguntas:
  • ¿Por qué crees que la longitud y el ancho de los rectángulos representan los factores de tus números?
  • ¿Qué número tiene más factorizaciones? ¿Cuál tiene la menor cantidad? ¿Por qué crees que es esto?
  • ¿Qué tipos de números tienen una sola factorización? ¿Qué tienen en común los rectángulos para estas factorizaciones?
  • Si duplica un número, ¿qué sucede con el número de factorizaciones? ¿Notas un patrón en las factorizaciones de tu número original y el número duplicado?
¿Les intentas dar respuesta?

domingo, 15 de septiembre de 2019

Arco y miniarco







Uriarte, D., & Guamberto, O. (2016). El juego con arco para el logro de la competencia número y operaciones en el Área de Matemáticas en los niños y niñas del III Ciclo de Educación Primaria de la Institución Educativa Nº 16097-Joronga Alto-2014. [Tesis maestría]. Universidad de Cajamarca, Perú.

Catálogo: https://www.editorialcepe.es/coleccion/mini-arco/


Estadística con policubos




REFERENCIAS DE AYUDA:

Alsina, Á., & Vásquez, C. (2018). Hacia una enseñanza eficaz de la estadística y la probabilidad en las primeras edadesRevista Didasc@ lia: Didáctica y Educación, 8(4), 199-212.

Nortes, R. (2016). Alternativas en la enseñanza de las matemáticas en la Educación PrimariaEducatio Siglo XXI, 34(2 Julio), 187-190.

Sowell, E. J. (1989). Effects of manipulative materials in mathematics instructionJournal for research in mathematics education, 20(5), 498-505.

Uribe-Flórez, L. J., & Wilkins, J. L. (2017). Manipulative use and elementary school students’ mathematics learningInternational Journal of Science and Mathematics Education, 15(8), 1541-1557.


Entrada original: https://flipeandolasmates.blogspot.com/2019/09/estadistica-con-policubos.html

domingo, 19 de mayo de 2019

Las matemáticas de los incas: el quipu y la yupana



A la vuelta de vacaciones tenía que preparar la clase del Taller de Matemáticas para el Máster de Didáctica de las Matemáticas en Infantil y Primaria sobre el aprendizaje del número, así que aprovechando la riqueza cultural que tenemos en clase dado que parte de nuestros estudiantes están al otro lado del Atlántico, me puse a investigar sobre uno de los instrumentos que se había nombrado en sesiones anteriores, la Yupana. Y mi navegación por la red, me dirigió conocer un poco más de la cultura matemática inca.

Consideré interesante esta búsqueda, dado que puede facilitar algún día las investigaciones etnomatemáticas de mis estudiantes en sus aulas recuperando algunos de los instrumentos originales (Tun y Díaz, 2015).

Guedj (1996, citado en Fedriani y Tenorio, 2004) clasifica los sistemas de numeración dependiendo del canal de comunicación que se emplea. Así señala un tipo denominado los “sistemas de numeración figurada” que están “constituidos por un sistema de marcas físicas realizadas sobre soportes u objetos” (p. 160). Uno de estos sistemas es el quipu, materializado en un conjunto de nudos realizados sobre cuerdas. No podemos considerarlo tanto un instrumento de cálculo, sino más bien como registro o archivo de información numérica.


El quipu está formado por una cuerda horizontal de la que se cuelgan otras.




2017-04-20_1649
Quipu y Yupana
Fuente de la imagen: Pareja (1986, p. 39)

¿Y qué instrumento facilitador de cálculo se empleaba? Yupay es un vocablo quechua, que significa contar, que sirvió de raíz para poner nombre al ábaco inca, la yupana. No parece estar claro su posición original, si horizontal o vertical. Pero mis estudiantes, me confirmaron que actualmente en las escuelas se utiliza de manera horizontal.

Cada círculo tiene el valor de 1.

Se completa de abajo arriba, siendo la primera casilla (de 5) la principal.

El resto del trabajo podemos decir que es similar a nuestro ábaco. Cuando se completa una columna (por ejemplo 10 unidades), pasa a convertirse en un círculo de la posición posterior (es decir, una decena).

Continuaré investigando sobre otros instrumentos históricos, que faciliten el trabajo aritmético y os contaré en próximas entradas.

Referencias bibliográficas:
Fedriani, E. M. & Tenorio, A. F. (2004). Los sistemas de numeración maya, azteca e inca. Lecturas matemáticas, 25(2), 159-190.
Mora, L. C. & Valero, N. (2013). La yupana como herramienta pedagógica en la primaria. Universidad Pedagógica Nacional, 05-05.
Pareja, D. (1986). Instrumentos prehispánicos de cálculo: el quipu y la yupana. Revista Integración, 4(1), 37-52.
Tun, M. & Díaz, M. A. (2015). Recuperar la memoria histórica y las matemáticas andinas. Revista Latinoamericana de Etnomatemática, 8(1), 67-86.


Fuente original de la entrada: https://www.unir.net/educacion/revista/noticias/las-matematicas-de-los-incas-el-quipu-y-la-yupana/549201740475/

sábado, 18 de mayo de 2019

Una visita a los museos de las matemáticas


Cuando acudimos a un museo no es habitual que busquemos “ver y tocar” las matemáticas, sin embargo, en la entrada de hoy queremos acercarte a distintos museos* donde cada rincón esconde un aprendizaje. Puede ser una idea excelente cuando organicemos nuestras próximas vacaciones, para hacer que nuestros pequeños puedan conocer una forma lúdica y divertida del aprendizaje de las matemáticas.


El Museu de Matemàtiques de Catalunya está en Cornellà de Llobregat (Barcelona, España):
El MMACA es el único museo de matemáticas en España, ofreciéndonos tanto aspectos lúdicos como culturales de las aplicaciones de las matemáticas.
Tiene actividades de carácter permanente, así como actividades temporales que se organizan para escuelas y familias, siempre mostrando la belleza de las matemáticas.
Con el MMACA colaboran distintos profesionales, organizando conferencias, talleres y exposiciones que dan enorme solidez al trabajo que allí se hace.


Otro espacio, esta vez en Madrid (España), es el Aula Taller Museo de las Matemáticas, dedicado fundamentalmente a los talleres y exposiciones, durante este año académico por ejemplo una interesante programación dedicada a los acertijos, enigmas y retos lógicos.

Il Giardino di Archimede, se encuentra en Florencia (Italia), un museo para las matemáticas. En el museo podemos conocer aplicaciones de las matemáticas a otras ciencias, la tecnología, y en especial, que es tal vez el más importante, su papel en la vida cotidiana, siempre de una manera divertida.


El National Museum of Mathematics se encuentra en Manhattan (New York, USA).
El MOMATH tiene como objetivo despertar la curiosidad en los visitantes, a través de su programa de exposiciones muy innovador, galería permanente y programas formativos, que estimulen la investigación desde las maravillas de las matemáticas.




El Mathematikum, se define como el primer museo interactivo en el mundo matemático; se encuentra en Gießen (Alemania). El visitante puede aprender matemáticas de una manera divertida, con un nuevo enfoque de los fenómenos matemáticos, mediante experimentos de todas las áreas de las matemáticas.


Atractor, situado en Oporto (Portugal), nos ofrece recursos digitales como una sección específica de software que puede facilitarnos aprendizajes desde nuestro propio hogar.



No podemos terminar este recorrido sin acercarnos al Museo Virtual de las Matemáticas, donde no tenemos que hacer otra cosa que disfrutar con las imágenes que las construcciones geométricas, los resultados de ecuaciones, u otro tipo de situaciones matemáticas dan lugar a elementos de belleza casi infinita.

* Hemos consultado las páginas web de los distintos espacios para ofrecerte esta información, que puedes conocer haciendo clic sobre su nombre.



miércoles, 15 de mayo de 2019

Jugando con manzanas

Mi amigo Jesús sabe que me gustan mucho las actividades con árboles, y ya hace años me regaló el árbol de manzanas que mis alumnos/as saben que me encanta diseñar actividades de resolución de problemas con él.
Así que este año Jesús me regaló otra posibilidad de poner en el escenario matemático un árbol, esta vez de forma de juego.

Para jugar tenemos un tablero, sobre el que pueden jugar de 2 a 4 jugadores, cuatro árboles con sus correspondientes manzanas de color, y dos dados, uno con el color y otro con la operación, como veis lo que parece es que nos lleva a sumar y restar.
Vamos a ver en qué consiste, e inicio reflexionando sobre la importancia de que las manzanas estén colocadas de distinta forma en cada uno de los árboles, lo que facilitará el conteo a simple vista (subitización) de distintas maneras.
Tenemos varias opciones de juego, el juego terminará siempre cuando un jugador complete su árbol lleno de manzanas.

1. Solo con el dado de color, tiene además de los cuatro colores, una cara blanca y una cara negra. Cada jugador tirará el dado, y cuando el jugador del que salga su color pondrá una manzana en su árbol. Si sale blanco, la pondrá en el suyo el jugador que ha tirado, y si sale negro, podrá quitarle una manzana a otro jugador.
2. Solo con el dado de operaciones. Partiremos teniendo 3 manzanas en cada árbol. Cada jugador tirará el dado por turnos, haciendo sobre su árbol la acción que se indique, tenemos poner (+) y quitar (-), una cantidad de 1, 2 y 3 manzanas.
3. Con los dos dados. Partiremos también teniendo 3 manzanas en cada árbol. Cada jugador tirará los dados por turnos, el jugador que tendrá acción sobre su árbol la definirá el dado de color, la acción vendrá desde el dado numérico, haciendo sobre su árbol la acción que se indique, tenemos poner (+) y quitar (-), una cantidad de 1, 2 y 3 manzanas. Si sale blanco en el color la acción es sobre su árbol, y si sale negro la hará sobre el jugador que elija, distinto del suyo.


¿Te animas a diseñar tus propias normas para el juego?