El juego "Counting bears" tiene unos botes llenos de ositos, unos dados y unas pinzas.
Las mates de mamá
En este espacio, como madre y matemática dedicada a la didáctica, haré recomendaciones para que como padres y madres, podamos ayudar a nuestros hijos e hijas con el aprendizaje de las matemáticas
domingo, 1 de diciembre de 2024
Ositos para clasificar y contar
viernes, 28 de junio de 2024
Del plano al espacio... manualidades para contar historias
Estos días estoy en el Congreso del CEPLI en Cuenca, y he tenido la suerte de conocer personas que llegaron desde distintos lugares del mundo para compartir materiales y recursos apoyados en la lectura, la narración de historias, la ilustración, ...
Esta mañana al llegar a mi lugar, una de las profesoras chilenas nos facilitó un taller para construir tarjetas, que transforman el plano en el espacio. Donde podemos trabajar con posiciones (geometría proyectiva), delante-detrás, arriba-abajo, dentro-fuera, ...
Os muestro alguno de los productos del taller, si bien, lo más interesante será contar historias con ellos.
Iniciemos con un rectángulo de papel que doblamos por la mitad, mejor con un papel grueso (o cartulina). Un dibujo de un rectángulo sobre el lado del doblez, o dos o tres... tantos como elementos quieras incorporar al escenario.
martes, 21 de mayo de 2024
Entre área y perímetro
La entrada de hoy parte de la lectura de un artículo de investigación, y me gustaría aportar algunas ideas para trabajar estos dos conceptos en el aula a partir de la lectura. El artículo incluye una serie de estrategias para trabajar en el aula, pensando en estudiantes con discapacidad, pero creo que puede ser válida en cualquier diseño de situaciones de aprendizaje con cualquier alumnado. Valoro este tipo de artículos científicos especialmente, por la sencillez de cómo trata la información y por la utilidad que puede suponer en las aulas de la escuela.
Inicio dando la referencia completa del artículo, por si alguien quiere consultarlo (no es en abierto). Utilizaré algunas expresiones literales (y traducidas) tomadas del citado artículo y que incluiré entre comillas.
King, S., Rojo, M., & Bryant, D. P. (2023). Demystifying Area and Perimeter: A Practitioner’s Guide to Strategies That Work. Intervention in School and Clinic, 58(4), 241-248. https://doi.org/10.1177/10534512221093780
Uno de los materiales que puede ayudarnos en el aula es el Geoplano, donde iniciaríamos definiendo la unidad de longitud como la distancia entre dos clavijas. El perímetro lo expresaríamos "como la longitud alrededor de una forma", tras lo que facilitaríamos una cantidad y pediríamos a los estudiantes que representasen como perímetro. "Un error común que cometen los estudiantes (...) es contar las clavijas en lugar de los espacios", algo que puede solventarse con una mediación adecuada del docente desde la observación de la forma construida.
martes, 7 de mayo de 2024
Poesía y matemáticas en Educación Infantil
Mi entrada de hoy he de agradecérsela a Purificación Rodríguez, estudiante del curso de Formación Permanente de UNED "Los Algoritmos o cómo Enseñar a Hacer las Operaciones Fundamentales en Matemáticas", que aprovecho para indicar que este será el último año que lo ofrezcamos, dado que vamos a sustituir por otro más actualizado y rico en actividades con el título "La resolución de problemas como contexto de aprendizaje para las operaciones fundamentales" del que os contaré algunas cosillas más adelante.
Las consideraciones anteriores ponen en evidencia que hasta los problemas aritméticos de suma y resta necesitan diversos esquemas que ayuden a formarse una representación adecuada para su resolución. Los niños y niñas necesitan conocimiento estratégico para elegir los esquemas adecuados a los distintos tipos de problemas que mejoren la representación de los mismos. La investigación en resolución de problemas aritméticos proporciona pruebas razonables de que poseer estrategias que se basen en un conocimiento conceptual del tipo de esquema mejora la solución (Baroody y Hume, 1991; Cawley y Parmar, 1992; Wooward y Montague, 2000; Jitendra, Dipipi y Perron-Jones, 2002) (p. 389).
* Gracias Purificación por permitirme utilizar tu actividad, como ejemplo en este blog. ¡Seguimos aprendiendo juntos!
Aguilar, M., Navarro, J. I., & Alcalde, C. (2003). El uso de esquemas figurativos para ayudar a resolver problemas aritméticos. Cultura y Educación, 15(4), 385-397. https://journals.sagepub.com/doi/pdf/10.1174/113564003322712956
martes, 26 de diciembre de 2023
Los números en las ilustraciones de los cuentos (2)
Hoy voy con una entrada pequeñita centrada en un álbum ilustrado, que no he encontrado en castellano, pero que me parece tan maravilloso que no quiero perder la oportunidad de hablaros de él.
Nuestro álbum de hoy se centra en los nombres colectivos, es decir, un par de zapatos son dos, o una docena de huevos son doce, por poner algunos ejemplos. ¡Qué mejor forma que acercar a los niños a estos nombres colectivos desde la historia y las ilustraciones de un álbum!
Conteo simple... un camino hacia los "hechos numéricos"
Estos días estoy aprovechando para leer un poco, las vacaciones nos facilitan esa pausa que todo docente deberíamos tener más a menudo.
Por casualidad llegué a un artículo, que no por sencillo es menos importante, que me ha llevado a la reflexión sobre la aproximación que hacemos a las operaciones aditivas en la escuela infantil desde el conteo. Me voy a permitir traducir algunos párrafos de este artículo, que podéis encontrar en la red (en inglés).
Thornton, C. A. (1989). Look Ahead" Activities Spark Success in Addition and Subtraction Number-Fact Learning. The Arithmetic Teacher, 36(8), 8-11.
"Contar es el enfoque natural de un niño para el trabajo numérico en el jardín de infantes y el primer grado y es la base para encontrar soluciones en sumas y restas, tanto dentro como fuera de contextos de resolución de problemas" (p. 8).
El programa que presenta la autora, parte de contar, pero no iniciando desde el "1" sino facilitando experiencias que inicien "con cualquier número, del 3 al 9, y contamos con dos o tres más" (p. 9). Una caja de fichas (o similar), un puñado de ellas que se colocan en la tapa de la caja y el niño/a las cuenta (5) y vamos incorporando nuevas fichas a partir de este conteo previo.
Pero tan importante es el conteo hacia delante como el conteo hacia atrás, hemos de brindar a los niños/as oportunidades para practicarlo tanto en la escuela como en casa, por ejemplo a través de separar, utilizando policubos (unifix): "Por turnos, los niños hacen un tren de cubos Unifix (por ejemplo, un tren "9") y cuentan hacia atrás a medida que, uno por uno, van separando los cubos del tren. Se hace especial hincapié en los números del 5 al 12 en interrumpir y contar hacia atrás de dos o tres" (p. 10).
No es habitual que en la escuela se practique el conteo con patrones auditivos (sonoros), sin embargo consideramos que es de enorme utilidad, por ejemplo "durante el juego libre, ya sea en el interior o al aire libre. "Cierra los ojos mientras hago rebotar la pelota. ¿Cuántos rebotes escuchas?" O bien, la actividad podría introducirse durante un período musical al ritmo de un tambor o pandereta (p.10), estas actividades repetidas facilitan además la incorporación de movimientos corporales, que en esta etapa resultará fundamental para incorporar a la secuencia de aprendizaje.
Utilizar el trabajo de representación con rejillas de la decena, puede dar lugar a un trabajo rico, que no siempre tiene que partir de la rejilla estándar, "la rejilla de 10 podría presentarse como un dibujo de un edificio de apartamentos o una nave espacial, con estrellas para indicar habitaciones o asientos que están ocupados. Luego se haría una modificación en la línea de preguntas para pedir a los niños que digan el número de habitaciones o asientos que están ocupados o el número que podría ocuparse" (p. 11).
"Se anima a los maestros a enfatizar cuatro extensiones del conteo simple en el jardín de infantes y en el trabajo con números de primer grado: contar hacia adelante, contar hacia atrás, patrones auditivos para conteos de dos y tres, y patrones visuales basados en la rejilla de 10. Estas cuatro habilidades para contar son prerrequisitos ocultos para tener éxito en el aprendizaje de operaciones numéricas en sumas y restas" (Thornton, 1989, p. 11).
sábado, 22 de julio de 2023
La dimensión emocional en matemáticas (1)
Mi entrada de hoy parte de leer el proyecto de tesis de Jorge, y es que al hablar de aprendizaje matemático resulta imposible separar la dimensión emocional de los resultados de rendimiento. En los últimos años, ya desde Polya (1945), la investigación didáctica ha focalizado en los distintos aspectos que se ponen en escena en este binomio de lo emocional de las matemáticas.
Esta relación ha sido definida desde distintos focos, quizá un autor relevante por lo que ha supuesto en la investigación posterior ha sido Schoenfeld (1983), que desde la resolución de problemas recoge la importancia de las creencias para la toma de decisiones del estudiante.
Me posiciono ante estos aspectos contraria a la defensa en algunos trabajos de las denominadas "inteligencias" matemática o emocional, y es creo que estos planteamientos sesgan la propia concepción de la didáctica en la escuela.
Desde la perspectiva del estudiante, inicio mi relato por un estudio longitudinal, por la cantidad de información de proceso que se recoge, donde Hidalgo Alonso et al. (2005) recogen seis ejes fundamentales: atribuciones de causalidad, gusto por las matemáticas, autoconcepto matemático, actitudes y creencias matemáticas, creencias sobre el profesor y creencias del entorno familiar. Muestran "la idea de mutua dependencia entre factores cognitivos y factores emocionales", planteando recomendaciones para la formación de los docentes de matemáticas, que tengan en cuenta "temas relacionados con la inteligencia emocional, tales como el autoconcepto del alumno aprendiz de matemáticas, los determinantes afectivos del rendimiento escolar, la influencia de la historia personal y de los miedos del alumno(tratamiento de la diversidad emocional) o los más generales relacionados con la influencia de las actitudes en el aprendizaje de las matemáticas". Plantean también la necesidad de "incorporar de manera sistemática en las programaciones escolares objetivos encaminados a una alfabetización emocional matemática".
Son distintos los aspectos que pueden influir en estas emociones, y uno de ellos que parece evidente su influencia es la concepción y el uso del error. Así algunos resultados recogen "que la calificación del alumno disminuirá conforme la intensidad de sus creencias de que naturalmente no es bueno para las matemáticas, y que las mismas no le entran por la comisión de errores y acorde a su conducta de falta de interés por corregirlos" (Eccius-Wellmann & Ibarra-González, 2020). Y es que dependiendo la forma del uso del error en el aula, el estudiante tendrá la confianza o no para intentar aprender del error cometido.
Nos fijamos también en este punto en situaciones de aprendizaje que faciliten la autoregulación y ees que, "mediante el aprendizaje autorregulado los estudiantes activan y conservan afectos y comportamientos junto con las cogniciones correspondientes" (Martínez Vicente & Valiente Barroso, 2019).
Pero no nos fijemos únicamente en lo que puede dar lugar a emociones negativas, sino también a las situaciones que ayudan a disfrutar, como "uno de los aspectos que favorece el aprendizaje es la generación de emociones positivas y hemos percibido cómo estas surgen al crear un problema –sobre todo en contextos lúdicos –y más aún cuando este es valorado por otras personas; en particular, por el profesor o la profesora o por los/as compañeros/as de clase" (Malaspina, 2021).
En cuanto a la perspectiva docente, el trabajo de García-González y Martínez-Padrón (2020), defiende que hay "dos razones por las que se desencadenan las emociones negativas de los docentes que enseñan matemática: (a) las experiencias emocionales experimentadas cuando eran estudiantes: generalmente, quienes tuvieron experiencias negativas con las matemáticas las siguen experimentando cuando se convierten en profesores, conservando la creencia de que las matemáticas son difíciles (...); y (b) el conocimiento de la asignatura: muchos de los docentes que tienen la responsabilidad de enseñar matemáticas no siempre son especialistas en los contenidos que les marca el currículo escolar".
Son distintos los estudios con futuros maestros que muestran la importancia de estas emociones en relación a las matemáticas. Me quedo ahora para que podáis echar un ojo a los instrumentos con el trabajo de Marbán et al. (2020) que establece "la necesidad de establecer programas de intervención afectivo-matemáticos específicos que acompañen los procesos de formación didáctica de los estudiantes para maestro"
Referencias:
Eccius-Wellmann, C., & Ibarra-González, K. P. (2020). Dependencia de la calificación de una evaluación diagnóstica en matemáticas con aspectos afectivos por la comisión de errores. Bolema: Boletim de Educação Matemática, 34, 544-563. https://doi.org/10.1590/1980-4415v34n67a10Hidalgo Alonso, S., Maroto Sáez, A., & Palacios Picos, A. (2005). El perfil emocional matemático como predictor de rechazo escolar: relación con las destrezas y los conocimientos desde una perspectiva evolutiva. Educación Matemática, 17(2), 89-116. https://www.redalyc.org/pdf/405/40517205.pdf
miércoles, 28 de diciembre de 2022
Los números en las ilustraciones de los cuentos (1)
Las situaciones de conteo para el niño son habituales y posiblemente más tempranas de lo que cabe pensar (Spelke y Kinzler, 2007).
Pero quizá antes de hablar de conteo, deberíamos haberlo hecho con un constructo más general como es el "sentido numérico", siguiendo las teorías que Piaget nos expuso:
La primera vez que aparece en la literatura científica el término sentido numérico es de la mano de Tobías Dantzig (1954), haciendo referencia a una habilidad que posee la persona a través de la cual puede reconocer cambios en pequeñas colecciones de elementos, incluso sin poseer conocimientos relacionados con el conteo o la secuencia verbal. Desde entonces, pero sobre todo a partir de los años ochenta, encontramos numerosos autores que tratan de delimitar el concepto o constructo de sentido numérico (Adamuz-Povedano y Bracho-López, 2019) (Adamuz-Povedano et al., 2022, p.41).
Así, son diversas las situaciones en la cotidianeidad del niño, tanto en la escuela como fuera de ella, en que el sentido numérico se desarrolla, y una de ellas en la que hoy me voy a fijar es la visualización de las ilustraciones de los cuentos, como representación de ideas matemáticas.
Y es que siguiendo a Alsina (2022) hay tres claves en la adquisición del sentido numérico en la etapa de infantil: la comprensión de los números, la representación de los números y el cálculo aritmético. Vamos pues a fijarnos en esta breve entrada en la representación, pero intentando dar un elemento de reflexión para los maestros, de manera que puedan relacionarlo con el diseño de actividades que faciliten la comprensión del número.
Iniciamos nuestro recorrido con la Figura 1, donde podemos ver siete estrellas dispuestas en una hilera a distintos niveles; esta situación puede facilitar el conteo desde la ilustración, pero ¿por qué no dar a los niños un puñado de estrellas para que las disponga sobre una mesa de la misma manera? (hemos de darle una cantidad superior a 7). Podemos observar cómo el niño las coloca para ayudarle a contar, o quizá desde su colocación podemos intervenir para modificar esta situación, por ejemplo, colocarlas en posición de cuadrícula (rejilla), o quizá en círculo; la estrategia de conteo se modificará dependiendo de estas representaciones, posiblemente.
Figura 1
Contando siete estrellas
Referencias bibliográficas:
- Adamuz-Povedano, N., Fernández-Ahumada, E., Martínez-Jiménez, E., & Torralbo, M. (2022). Instrumentos para la evaluación del sentido numérico en los primeros años de aprendizaje matemático. En J.A. Fernández-Plaza, J.L.Lupiáñez, A.Moreno, y R.Ramírez (Eds.), Investigación en Educación Matemática. Homenaje a los profesores Pablo Flores e Isidoro Segovia (pp. 39-56). Octaedro.
- Alsina, Á. (2022). Itinerarios didácticos para la enseñanza de las matemáticas (3-6 años). Graó.
- Bruno, P., & Cabassa, M. (2018). Libro de contar. OQO.
- Ferri, G. (2020). ¡Todos al bus! Editorial La Coccinella.
- Jandl, E. (1997). Ser quinto. Loguez Ediciones.
- López Moya, J. (2020). Mi infinito. FUN readers.
- Mora, P. (1996). Uno, Dos, Tres. Clarion Books.
- Ruzzier, S. (2015). Two mice. Clarion Books.
- Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental science, 10(1), 89-96. https://doi.org/10.1111/j.1467-7687.2007.00569.x
https://www.patmora.com/books/uno-dos-tres/
Two Mice
Tiene versión en castellano, "Dos ratones". Editorial A Buen Paso (2017).
Clasificando con Luna (20 meses)
La tarea de clasificar “implica la aplicación o descubrimiento de una regularidad, clasificatoria” (Ruesga, Giménez y Orozco, 2005, p. 130), que dadas las características de la etapa se suele poner en escena a través del juego. Esta tarea de clasificar permanece desde niños hasta adultos, dado que mantener una organización en las cosas o situaciones nos facilita su comprensión. El maestro como adulto “manifiesta frecuentemente sus habilidades clasificatorias en circunstancias diversas, sea ordenando simplemente el material disperso ubicado en su mesa” (Bermejo, 1985, p. 211). Además, debe considerar la habilidad de clasificar inherente al quehacer matemático, considerándolo en diversas actividades de aula, dado que la clasificación requiere que el niño construya o acepte reglas que el maestro define para la acción. La selección de materiales debe ser reflexiva tanto para el maestro como para los alumnos, “más que la forma de los materiales y las tareas, es importante que tengan significado” (Clements y Sarama, 2009, p. 329)*.
Veamos qué sucede cuando Luna (que ya distingue los colores) tiene una instrucción que es recoger los conejitos blancos, y solo tiene una bandeja para guardarlos (Vídeo 1).
Vídeo 1
Clasificación con conejitos
En este caso Luna lo hace fenomenal, sigue las instrucciones que se le dan, tranquila, concentrada en lo que está haciendo, no mostrando sorpresa ante instrucciones más numéricas o incluso demasiado guiadas como señalar dónde están algunas de las piezas. Es importante que en este tipo de tareas, el adulto respete el tiempo, le indique consignas como "¿Ya has terminado?", "¿Queda alguno más?", o "Vamos a poner todos los demás en un montón para jugar con ellos". De esta manera, llevaríamos a Luna a una situación en relación con el material que le facilita la autocomprobación de la tarea, forzando la interacción con el material restante.
Pero veamos de manera reflexiva el final del vídeo, todos los conejitos blancos están guardados y el adulto le solicita ahora los amarillos ¿Qué sucede? Pues que necesitaríamos otra bandeja, la niña tiene claro que ha seguido la instrucción inicial, "guardar los conejitos blancos".
Vamos con el siguiente vídeo, ahora la instrucción inicial no es guardar los ositos blancos, sino guardar los juguetes. Si nos fijamos, la muñeca está ya dentro de la caja, y la instrucción es que los vamos a guardar en orden, la secuencia temporal viene determinada por los colores (Vídeo 2).
Vídeo 2
Luna clasifica desde una perspectiva de guardar
Buena actitud en el guardado del material, pero... tenemos un distractor, ¿nos hemos fijado? La televisión está puesta, y Luna "se cansa" antes de terminar, ¿nos sentamos mejor a ver la televisión?
Este tipo de situaciones cotidianas en casa, desde el guardado del material, a la construcción con las piezas, pueden ser momentos relajados donde Luna practique algunos contenidos lógicos, y de paso dé lugar a reflexiones del adulto.